特斯拉人形機器人“擎天柱””于 2022 年 9 月底真機發布!擎天柱能與觀眾進行互動,還能夠搬箱子、澆水,甚至是移動重物。
電機驅動上,“擎天柱”擁有 2.3KWH、52V 電壓的電池組,內置電子電器元件的一體 單位,支持人形機器人工作一整天;選用 28 個定制關節驅動器,復用汽車動力總成設計經 驗,設計 6 種關節驅動器,包括 3 種不同規格的舵機(采用諧波減速器)和 3 種不同規格 的直線執行器(采用永磁電機,可抬動 1.5 噸三角鋼琴的),找到成本與效率的佳組合。
量化人體運動軌跡與關節受力,幫助機器人行動更加靈活。以膝蓋為例,特斯拉采用仿生思維將機器人膝關節構造成四連推桿結構,復用汽車底層技術,將機器人腿部組件產 生的壓力數據線性化,優化機器人在不同的運動過程中的下肢運動和力度控制能力。
“擎天柱”全身約 50 個自由度,手指靈敏度G,能夠滿足多種規格的物 體抓取需求。機器人單手具有 6 個執行器,11 個自由度,在對生拇指與金屬肌腱的配合 下,“擎天柱”能夠完成對不同重量和大小的物件的抓握。
人形機器人因其技術集成度及難度都很G,被視作AIL域的終J形態,也將成為未來智能機器人的重點發展方向之一。
| 資料獲取 | |
| 服務機器人在展館迎賓講解 |
|
| 新聞資訊 | |
| == 資訊 == | |
| » 機器人的感覺順序與策略:變換,處理 | |
| » 機器人多指靈巧手的神經控制的原理:控制系 | |
| » 機器人自適應模糊控制: PID 模糊控制 | |
| » 機器人的進化控制系統:解決其學習與適應能 | |
| » 機器人的神經控制系統特性和能力:并行處理 | |
| » 機器人的學習控制系統:搜索、識別、記憶和 | |
| » 機器人的模糊控制系統:模糊化接口、知識庫 | |
| » “人工智能+制造”專項行動實施意見:10 | |
| » 機器人的專家控制系統:知識庫、推理機、控 | |
| » 智能機器人的遞階控制系統:精度隨智能降低 | |
| » 機器人的力和位置混合控制方案:主動剛性控 | |
| » 機器人的多關節位置控制器:各關節間的耦合 | |
| » 機器人的單關節位置控制器:光學編碼器與測 | |
| » 機器人位置控制基本控制結構:關節空間控制 | |
| » 機器人的液壓伺服控制系統的優勢:結構簡單 | |
| == 機器人推薦 == | |
服務機器人(迎賓、講解、導診...) |
|
智能消毒機器人 |
|
機器人底盤 |
![]() |